Math 335 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover through §7.3

- 1. Suppose $a_n > 0$, $b_n > 0$ for all n > 1. Suppose that $\sum_{1}^{\infty} b_n$ converges and that $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$ for $n \ge N$. Prove that $\sum_{1}^{\infty} a_n$ converges.
- 2. Let S be the set of all positive integers whose decimal representation does *not* contain 2. Prove that $\sum_{n \in S} \frac{1}{n}$ converges.
- 3. Assume $a_n \ge 0$ for all $n \ge 1$. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges. Give an example of a sequence $a_n \ge 0$ such that $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges and $\sum_{1}^{\infty} a_n$ diverges.
- 4. Prove that if $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. (Assume $a_n \ge 0$.)
- 5. Let x_n be a convergent sequence and let $c = \lim_{n \to \infty} x_n$. Let p be a fixed positive integer and let $a_n = x_n x_{n+p}$. Prove that $\sum a_n$ converges and

$$\sum_{1}^{\infty} a_n = x_1 + x_2 + \dots x_p - pc.$$

6. Suppose $\sum_{n=0}^{\infty} a_n$ converges. Prove that $\sum_{n=0}^{\infty} \frac{a_n}{n+1}$ converges and

$$\int_0^1 \sum_{n=0}^\infty a_n x^n dx = \sum_{n=0}^\infty \frac{a_n}{n+1}$$

7. (a) Suppose f_n converges uniformly on S. Prove that $|f_n|$ converges uniformly on S.

(b) Suppose f_n is Riemann integrable on $I \subset \mathbb{R}$. Assume that f_n converges uniformly on I to f. Prove that

$$\lim_{n \to \infty} \int_I f_n^2 = \int_I f^2.$$

- (c) Suppose f_n converges uniformly on S. Does f_n^2 converge uniformly on S? Give a proof or counterexample.
- 8. (a) Suppose ∑₁[∞] a_n converges. Fix p ∈ Z⁺. Prove that lim_{n→∞}(a_n + a_{n+1} + ... a_{n+p}) = 0.
 (b) Suppose lim_{n→∞}(a_n + a_{n+1} + ... a_{n+p}) = 0 for every p. Does ∑₁[∞] a_n converge?
- 9. Let $a_n > 0$ and suppose $a_n \ge a_{n+1}$. Prove that $\sum_{1}^{\infty} a_n$ converges if and only if $\sum_{1}^{\infty} a_{3n}$ converges.
- 10. Let $a_n > 0$ and let

$$L_n = \left[\log(\frac{1}{a_n})\right] / (\log n).$$

Assume $L = \lim_{n \to \infty} L_n$ exits.

- (a) If L > 1 prove that $\sum_n a_n$ converges.
- (b) If L < 1 prove that $\sum_{n} a_n$ diverges.
- 11. Suppose f is continuous on [0, a]. Let f_n be defined inductively by

$$f_0(x) = f(x), f_{n+1}(x) = \int_0^x f_n(t)dt$$

Prove that $f_n \to 0$ uniformly on [0, a].

12. Prove that

$$\frac{1}{n!} > \sum_{j=n+1}^{\infty} \frac{1}{j!},$$

for $n \geq 1$.

- 13. Suppose that $a_n \ge 0$ and $\sum_{n=0}^{\infty} a_n$ diverges; and suppose that $\sum_{n=0}^{\infty} a_n x^n$ converges for |x| < 1. Prove $\lim_{x \to 1^-} \sum_{n=0}^{\infty} a_n x^n = +\infty.$
- 14. Suppose f_n is a sequence of continuous functions that converges uniformly on a set W. Let p_n be a sequence of points in W that converges to a point $p \in W$. Prove that $\lim_{n\to\infty} f_n(p_n) = f(p)$.
- 15. Let be a sequence of continuous functions in I = [a, b] and suppose $f_n(x) \ge f_{n+1}(x) \ge 0$ for all $x \in I$. Suppose $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in I$ (point-wise convergence to 0). Is the convergence uniform? Give a proof or a counterexample.

Sample Problems

- 16. Prove that $\sum_{n=0}^{\infty} \frac{x}{(1+|x|)^n}$ converges for all x, but the convergence is not uniform.
- 17. Assume $p \ge 1$, $q \ge 1$. Prove that

$$\int_0^1 \frac{t^{p-1}}{1+t^q} dt = \frac{1}{p} - \frac{1}{p+q} + \frac{1}{p+2q} \dots$$

Give careful justification of any manipulations.

- 18. Suppose $a_n > b_n > 0$, $a_n > a_{n+1}$ and $\lim_{n \to \infty} a_n = 0$. Does $\sum_{1}^{\infty} (-1)^n b_n$ converge? Give a proof or a counterexample.
- 19. Prove that $\sum_{n=1}^{\infty} \frac{\cos nx}{n}$ converges uniformly for $x \in [a, b], 0 < a < b < 2\pi$, but does not converge absolutely for any x.
- 20. Prove that $\sum_{1}^{\infty} (-1)^n \frac{\sin nx}{n}$ converges uniformly on $\{|x| < 1\}$ to a continuous function.
- 21. Let f_n be a sequence of functions defined on the open interval (a, b). Suppose $\lim_{x \to a^+} f_n(x) = a_n$ for all n. Suppose $\sum_{1}^{\infty} f_n$ converges uniformly on (a, b) to a function f. Prove that $\sum_{1}^{\infty} a_n$ converges and $\lim_{x \to a^+} f(x) = \sum_{1}^{\infty} a_n$. Do not assume f_n is continuous on (a, b).
- 22. Suppose the series $\sum_{1}^{\infty} a_n$ converges. Prove that $\sum_{1}^{\infty} \frac{a_n}{n^x}$ converges for $x \ge 0$. Let $f(x) = \sum_{1}^{\infty} \frac{a_n}{n^x}$. Prove that $\lim_{x\to 0^+} f(x) = \sum_{1}^{\infty} a_n$.
- 23. Let $p_j(t) = e^{-t} \frac{t^j}{j!}$.

(a) Suppose $\sum_{0}^{\infty} a_n$ converges. Let $s_n = \sum_{0}^{n} a_j$. Prove that

$$\lim_{t \to \infty} \sum_{0}^{\infty} s_j p_j(t) = \sum_{0}^{\infty} a_n$$

- (b) Compute this limit in the case that $a_n = x^n$ for those x for which the limit exists (even in the case that $\sum x^n$ does not converge). This limit is called the Borel regularized value. What does this give for the *Borel regularized value* of $1 2 + 4 8 + 16 \pm ...$?
- 24. You will need to know the definitions of the following terms and statements of the following theorems.

- (a) Convergence and divergence of a series
- (b) Comparison test
- (c) Integral test
- (d) Cauchy condensation test
- (e) Root test and ratio test
- (f) Abel's theorem
- (g) Uniform convergence of a sequence or series of functions
- (h) Weierstrass M-test
- (i) Continuity of a uniform limit of continuous functions
- (j) Integration and differentiation of a sequence or series
- (k) Power series
- (1) Radius of convergence of a power series
- (m) Integration and differentiation of a power series

25. There may be homework problems or example problems from the text on the midterm.